
Element Selectors
Element selectors within the Monetate Builder tools support both CSS3 and Sizzle selector syntax.

You can use attribute selectors and pseudo-class selectors in both stylesheets and the Element Selector field.
You can only use Sizzle selectors in the Element Selector field.

The expandable sections below contain information and examples about the types of selectors that the
Monetate platform supports.

Selector Types
You can use any element (also known as a node) on a page as a selector to target element(s) of that node
type. You can target any number of elements in HTML, such as <div> , <img> , or <p> . You can also
directly select any HTML5 nodes as well. This includes <aside> , <nav> , and many others. You can
review a full list of HTML elements at MDN Web Docs.
The following example selects all links, or <a>  elements, and then applies CSS styling to those elements.

a {
  color: blue;
}

You can target multiple elements at the same time by formatting with comma separation. The following
example selects all paragraphs ( <p> ) and all spans ( <span> ) and then applies CSS styling to those
elements.

p, span {
  color: #000;
}

You can also write a selector to target every type of element on the page. This is useful for global resets of
all elements, as demonstrated in the following example:

* {
  margin: 0;
  padding: 0;
}

Attribute Selectors
The attribute selector is used to select elements with a specified attribute. The following example selects
all <a>  elements with a target attribute and applies CSS styling to those elements:

a[target] {
  background-color: yellow;
}

https://developer.mozilla.org/en-US/docs/Web/HTML/Element


An attribute selector isn't limited to the existence of the attribute on the element. You can also specify the
attribute's value.

ID
You can write some specific attributes using abbreviations in CSS and Sizzle. An ID is a unique identifier
attribute that should only ever be present on one element per page and is formatted #id .
This example applies a border only to the one element with this ID.

<a href="#" id="logoLink">Test</a>

#logoLink {
  border: 1px solid red;
}

Class
You can write some specific attributes using abbreviations in CSS and Sizzle. A class is an identifier
attribute that may be present on one or more elements per page and is formatted .class .
This example applies a border to only the elements with the class blue .

<a href="#" class="blue">Test</a>

.blue {
  color: blue;
}

Attribute Value Equals String
The following example selects all <a>  elements with a target attribute that has a value exactly equal to
the string valueOne . This is case-sensitive and applies CSS styling to those elements.

<a href="#" target="valueOne">Test</a>

a[target="valueOne"] {
  background-color: yellow;
}

Attribute Value Equals Word
The following example selects all <a>  elements with a target attribute that has a value exactly equal to
the word valueOne . This is case-sensitive and applies CSS styling to those elements.

<a href="#" target="valueOne">Test</a>

a[target=valueOne] {
  background-color: yellow;
}

Attribute Value Contains String
The following example selects all <a>  elements with a target attribute that has a value containing the
string One . This is case-sensitive and applies CSS styling to those elements.

<a href="#" target="valueOne">Test</a>



a[target*="One"] {
  background-color: yellow;
}

Attribute Value Contains Word
The following example selects all <a>  elements with a data  attribute that has a value containing the
whole word one . This is case-sensitive and applies CSS styling to those elements.

<a href="#" data="value one">Test</a>

a[data~=one] {
  background-color: yellow;
}

Attribute Value Starts with String
The following example selects all <a>  elements with a target attribute that has a value starting with the
string val . This is case-sensitive and applies CSS styling to those elements.

a[target^="val"] {
  background-color: yellow;
}

Attribute Value Starts with Word
The following example selects all <a>  elements with a target attribute that has a value starting with the
word value . This is case-sensitive and applies CSS styling to those elements. The value must be a whole
word that is either alone, such as class="value" , or that is followed by a hyphen ( - ), such as class="value-
three" .

<a href="#" data="value-one">Test</a>

a[data|="value"] {
  background: yellow;
}

Attribute Value Ends with
The following example selects all <a>  elements with a target attribute that has a value ending with the
string ueOne . This is case-sensitive and applies CSS styling to those elements.

<a href="#" data="value-one">Test</a>

a[data$="ue-one"] {
  background-color: yellow;
}

You can also write the selector without quotes:

a[data$=one] {
  background-color: yellow;
}



Structural Selectors

Direct Descendant
Use the >  selector to select elements that are exactly one level down in the markup structure and no
deeper. The following example selects all div  elements only one level down in the markup of the .main
parent element and applies CSS styling to those elements. It does not apply CSS styling to any others that
may be two or more levels farther down in the markup.

 .main > div {
  background-color: yellow;
}>

Adjacent Sibling Combinator
Use the +  selector to select one or more elements directly after another specific element. The following
example selects all div  elements that directly follow another div  within the .main  parent element.

.main > div + div {
  background-color: yellow;
}

General Sibling Combinator
Use the ~  selector to select one or more elements that are after another element. The element that you
select doesn't need to immediately succeed the first element but can appear anywhere after it. The
following example selects all div  elements that generally follow another div  within the .main  parent
element.

.main > div ~ div {
  background-color: yellow;
}

Structural Pseudo-Class Selectors
Pseudo-class selectors define a special state of an element. The syntax is as follows:

selector:pseudo-class {
  property: value;
}

You may be familiar with CSS pseudo-class selectors such as :link , :visited , :hover , and :focus . These
selectors all allow for styling on various states of elements.

:first-child
The :first-child  pseudo-class represents any element that is the first child element of its parent element. In
the following example, the selector applies CSS styling to every <p> , which is the first child element
within an element with the main  class.



.main p:first-child {
  background-color: yellow;
}

:last-child
The :last-child  pseudo-class represents any element that is the last child element of its parent element. In
the following example, the selector applies CSS styling to every <p> , which is the last child element within
an element with the main  class.

.main p:last-child {
  background-color: yellow;
}

:first-of-type
The :first-of-type  pseudo-class represents any element that is the last child element of its parent element
of a specific type.
In the following example, the selector applies CSS styling to only <p>  elements with the blueText  class,
which is the first child element within an element with the main  class.

.main p.blueText:first-of-type {  
background-color: yellow; 
}

The notable difference with this selector is that the type matters. Since <p>  is specified, the
Personalization platform does not consider other elements, such as <span>  or <div>  that might also
have the blueText  class.

:last-of-type
The :last-of-type  pseudo-class represents any element that is the last child element of its parent element of
a specific type.
In the following example, the selector applies CSS styling to only <p>  elements with the blueText  class,
which are the last child element within an element with the main  class.

.main p.blueText:last-of-type {
  background-color: yellow;
}

The notable difference with this selector is that the type matters. Since <p>  is specified, the
Personalization platform doesn't consider other elements, such as <span>  or <div> , that also have the

blueText  class.

:only-of-type
The :only-of-type  pseudo-class matches every element that is the only child of its type of its parent.
In the following example, the selector applies CSS styling to the only <p>  element, which is a child
element within an element with the main  class.



.main p:only-of-type {
  background-color: yellow;
}

This selector doesn't work if there are multiple <p>  elements present within a parent. It only applies to
instances in which there is a single element type within a parent.

:nth-child
The :nth-child  pseudo-class selector matches every element that is the nth child, regardless of type, of its
parent where n can be a number, a keyword, or a formula.

Number
In the following example, the selector applies CSS styling to every <p>  element, which is the second child
element of an element with the main  class.

.main p:nth-child(2) {
  background-color: yellow;
}

Odd or Even
In the following example, the selector applies CSS styling to every <p>  element whose index is odd or
even within an element with the main  class.

.main p:nth-child(odd) {
  background-color: yellow;
}

.main p:nth-child(even) {
  background-color: blue;
}

Formula
:nth-child  can be used with a formula (an + b). a  represents a cycle size, n  is a counter, which starts at

0, and b  is an offset value that you can use if, for example, you want to begin counting after the fourth
item.
In the following example, the selector applies CSS styling to every <p>  element whose index is a multiple
of 3 within an element with the main  class.

.main p:nth-child(3n+0) {
  background-color: yellow;
}

It is not necessary to include an offset value in the formula. If you do not, it is implied to be 0 . You can
achieve the same effect with the following example:

.main p:nth-child(3n) {
  background-color: yellow;
}



The formulas within :nth-child  can be confusing and complex. The blog CSS-Tricks published How nth-
child Works that can help you brush up on using :nth-child  effectively.

:nth-of-type
:nth-of-type  works like :nth-child , and you can use it with a formula (an + b). a  represents a cycle size,
n  is a counter, which starts at 0, and b  is an offset value. The notable difference is that the element type

matters in the calculation of the formula.
In the following example, the selector applies CSS styling to every <p>  element with a class of blueText
whose index is a multiple of 3 within an element with the main  class.

.main p.blueText:nth-of-type(3n) {
  background-color: yellow;
}

Since <p>  is specified, other elements, such as <span>  or <div> , that might also have the blueText
class are not factored into the formula.

Sizzle Selectors
Sizzle is a JavaScript selector library that offers powerful ways to select elements. You can select based
off text contained or not contained within elements, the existence of child elements inside a parent, or if
those elements do not exist.

For more information about Sizzle, including the full list of selectors supported, refer to jQuery's Wiki on
GitHub.

:has
The :has()  selector matches when a parent element contains at least one element that matches the
specified selector. For example, div.parent:has(div.child)  selects div.parent  only if a div.child  element
exists anywhere among its descendants, not just as a direct child.

:contains
The :contains()  selector matches when a parent element has text that matches the string. For example

div.parent:contains(string)  selects div.parent  only if it has text directly in it or anywhere among its
descendants that matches the string. The string is case-sensitive and needs to match only part of the text
content.
A div:contains(order)  selector selects <div>  elements containing the text string order . It also matches

<div>  elements that contain the word border because the string still matches part of the word.

:not
The :not()  selector matches all elements that do not match the given selector.

Sizzle selectors can only be used in the Element Selector field and are not supported in CSS.

https://css-tricks.com/how-nth-child-works/
https://github.com/jquery/sizzle/wiki
https://github.com/jquery/sizzle/wiki


You can specify that the matching selector is not a specific type. For example, .box:not(div, p)  selects all
elements with box  class except <div>  and <p>  elements. You can also format the selector with
spaces rather than comma separation:

.box:not(div p)

You can specify other attributes, IDs, or classes, such as div:not(.box) , which selects <div>  elements
except ones with box  class.

:not in CSS
You can use the :not()  selector in CSS as well. In the example below, all elements with the box  class get
a red background unless they are <p>  tags.

.box:not(p) {
  background: red;
}

:eq
The :eq(n)  selector selects an element with an index number equal to n. Unlike pseudo-class selectors, the
positional index for Sizzle begins at 0 (zero), so .main > div:eq(2)  matches the third first-level <div>
within .main  rather than the second.

:nth
Similar to eq , the :nth(n)  selector matches an element with a number n.

:odd and :even
Because the positional index begins at 0, :odd  and :even  work counterintuitively.

li:odd
The li:odd  selector matches the second, fourth, sixth, and other even-numbered list items.

li:even
The li:even  selector matches the first, third, fifth, and other odd-numbered list items.

:gt
This selector selects all elements greater than the specified number. Remember, the positional index is 0.
For example, the .box:gt(1)  selector would select all .box  occurrences after the second instance.

:lt
This selects all elements less than the specified number. Remember, the positional index is 0.
For example, the .box:lt(4)  selector would select the first four instances of .box . Remember, 0 through 3
are the first four instances.



:first
The :first  pseudo-class is equivalent to :eq(0) . You could also write it as :lt(1) .

In the example div p:first , the selector matches only the first <p>  element within a <div> .

:last
The :last  selector selects a single element by filtering the current sizzle or jQuery collection and matching
the last element within it.

In the example div p:last , the selector matches only the last <p>  element within a <div>  based on the
current Sizzle or jQuery collection.

For a complete list of CSS selectors, refer to W3 Schools. For an example of various CSS selectors, refer to
the Selector Tester application by W3 Schools.

The difference between :first  and :first-child  is that :first  only matches a single element.
:first-child  can match more than one element, including one for each parent.

The current collection can change based on interactive elements within a page.

When you use selectors in a global CSS stylesheet, the styling applies to all elements that they
match. When used in Monetate actions in the Element Selector field, they only match the first
instance unless you enable Select Multiple Elements.

Some CSS selectors are not supported by earlier versions of Internet Explorer. For a more in-
depth list, refer to the compatibility chart available on Quirksmode.

https://www.w3schools.com/cssref/css_selectors.php
https://www.w3schools.com/cssref/trysel.php?
https://www.quirksmode.org/css/selectors/

