
Session Stream
Session Stream provides open access to raw Monetate session data. It allows you to join Monetate data with
your own business data for more advanced analysis and to inform future personalization initiatives across all
channels. You can use this data in relational databases such as MySQL, data warehouses such as Amazon
Redshift, or BI platforms such as Tableau and Domo.

Session Stream provides JSON data files compressed with Gzip in 15 minute increments. Each file contains raw
data from every session that Monetate observed on your site during that time. Session Stream is available for all
Monetate users.

Accessing Session Stream
Session Stream is provided via Secure File Transfer Protocol (SFTP).

Click ANALYTICS in the top navigation bar, and then select Session Stream.

On the Sites page, click CREATE SFTP USER to configure an SFTP username and authentication method. If
you've already created an SFTP user, then you can use those credentials to access Session Stream.

You must have the Administrator role in the Monetate platform to set up SFTP users.



Use your SFTP user credentials to access the server URL listed in the SFTP Users for Accessing the Session
Stream and Uploads table on the Sites tab. All Session Stream files are available in the

account_id/raw_data/session_stream/  directory. Files are organized hierarchically under the session_stream
directory by four-digit year, two-digit month, then two-digit day. For example, the files from May 1, 2017, are in

session_stream/2017/05/01/ .

A Session Stream file is available for 820 days after it's generated.

Monetate names Session Stream files with a specific format. The following example filename is for a file from
the 15-minute period starting May 1, 2017, at 3:45 AM: 20170501T034500.000Z_PT15M-1477542463784.json.gz .

The name consists of the following parts:

20170501T034500.000Z  — The date and time in ISO-8601 basic format. The date is encoded as YYYYMMDD
and the time as hhmmss.sss . Z  is the time zone indicator for Zulu time (UTC±00:00). This is always Z in
Session Stream.
An underscore character ( _ )

PT15M  — The duration of the time interval in ISO-8601 duration format. This is always 15 minutes in
Session Stream.
A dash character ( - )

1477542463784  — A unique string that prevents name collisions between multiple files within the same
time interval.

Because each file contains raw data from every session that Monetate observed on your site, there
can be thousands of files per day totaling several gigabytes depending on your site traffic.



Remember that open sessions can last up to 12 hours, and all file timestamps are in UTC time. If you download
the files for the prior day's data at 1 AM UTC, then you may miss some sessions that haven't closed yet. These
sessions are available in the following day's files.

Programmatically Downloading Session Stream Files
As an alternative to using an SFTP client, you can use the sample Python script included in this documentation
to download your files.

When run more than once for a particular date, this script only downloads files that you haven't already retrieved.
You can input as a parameter the date for which you want to fetch data. The Session Stream files are
downloaded to the location you specified with the same date-based directory structure that Monetate uses to
organize the files. You can schedule this script to run daily or write a similar application that better meets your
needs.

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from argparse import ArgumentParser
from datetime import datetime, timedelta
import paramiko
import os

PATH_FORMAT = "%Y/%m/%d"

def main():
    yesterday = datetime.now() - timedelta(days=1)
    parser = ArgumentParser(description="Downloads monetate session stream via FTP for the specified date.")
    parser.add_argument("--host", default="download.monetate.net", help="The host to connect to (default: %(default)s)")
    parser.add_argument("--port", default=22, type=int, help="The port to connect on (default: %(default)s)")
    parser.add_argument("-u", "--username", required=True, help="FTP user to connect as")
    parser.add_argument("-p", "--password", required=True, help="FTP user password")
    parser.add_argument("-d", "--date", default=yesterday.strftime(PATH_FORMAT),
                        help="The date to sync locally, format YYYY/MM/DD (default: %(default)s)")
  parser.add_argument("--root_output_dir", default=os.path.abspath(os.path.dirname(__file__)),
                        help="The root directory where files will be synced locally (default: %(default)s)")
    args = parser.parse_args()

    base_path = "raw_data/session_stream/{}".format(args.date)

    # create local paths if they don't exist
    try:
        output_path = os.path.join(args.root_output_dir, base_path)

You must have Paramiko 2.1.1 or later to run this example script.

https://pypi.org/project/paramiko/2.1.1/


        output_path = os.path.join(args.root_output_dir, base_path)
        os.makedirs(output_path)
    except OSError:
        pass

    # list the files in the currently directory
    local_files = frozenset(os.listdir(output_path))

    # connect via ftp and list the files
    transport = paramiko.Transport((args.host, args.port))
    transport.connect(username=args.username, password=args.password)
    sftp = paramiko.SFTPClient.from_transport(transport)

    # list the files we need to download
    print "Calculating files to download..."
    current_files = frozenset(sftp.listdir(base_path))
    files_to_download = current_files - local_files

    # download all the files needed
    print "Fetching {} files...".format(len(files_to_download))
    for filename in files_to_download:
        remote_path = "{}/{}".format(base_path, filename)
        local_path = os.path.join(output_path, filename)
        sftp.get(remote_path, local_path)

if __name__ == '__main__':
  main()

Session Data Description
Session Stream contains data for any session that has ended, which occurs after 30 minutes of inactivity and
persists for a maximum of 12 hours if a visitor is active at least once every 30 minutes. Each line in a file
contains one JSON object that represents one session.

Nested Data
Each session is not a flat structure. In addition to basic information (browser, OS, and session time), the fields in
the object and array types contain more detailed data and may each have no entries, one entry, or many entries
per session. Variable-size fields include the following:

custom_targets
offers
page_event_ids
purchases
cart_lines
view_lines
purchase_lines



The purchase_lines  field is doubly nested, and each value has the items  field, which is variable-size.

Field Size Limits
The object and array fields described are limited to 1,000 items each to protect against tasks performed at a
higher rate. A higher rate indicates the likelihood of a bot and nonhuman interaction.

This upper limit is not hard. You may see sessions with a few extra items. Fields with fewer than 1,000 items are
always complete, but you should assume fields at or exceeding the size limit to be incomplete.

This table contains a more detailed description of the fields. Refer to the spec-compliant JSON schema for the
precise format of the structure.

Field Type Description

account_id Number
The unique numeric ID associated with your Monetate
account.

browser String The browser used within the session.

browser_version String The specific version of the browser used in the session.

cart_lines Array
A list of items carted, including product ID, SKU, and time
for each item.

city String The visitor's city based on IP address.

country_code String ISO 3166-1 two-letter country code.

custom_targets Object

Custom target IDs and values matched to a visitor in the
session based on targets created in Target Builder. If
you've configured an ID collector to collect names, e-mail
address, and other data, then your custom target values
may contain personal identifiable information (PII). PII
can be sensitive or non-sensitive; be mindful if you're
loading sensitive information into a data warehouse or BI
platform.

customer_id String
The unique customer ID value collected on the page
during the session.

customer_link String

A customer ID that was previously associated with the
user in a prior session. This can differ from the

customer_id  value if the customer_id  collected in the
current session differed from the customer_id  collected
in a previous session.

device_type String
The type of device used during the session deciphered
through user agent string.

end_time Number Session end time in Unix milliseconds.



guid String
String that uniquely identifies the Monetate session:

account id: Monetate ID .

has_cart String
String ( t  or f ) to indicate whether the session viewed
the cart page with an item in the cart.

has_new_customer String
String ( t  or f ) to indicate whether the visitor for this
session represents a new customer. f  indicates a
returning customer.

has_product_view String
String ( t  or f ) to indicate whether a product page was
viewed during the session.

has_purchase String
String ( t  or f ) to indicate whether a product was
purchased during this session.

has_recommendation_cart String
String ( t  or f ) to indicate whether a recommended
product was added to cart.

has_recommendation_click String
String ( t  or f ) to indicate whether a recommendation
was clicked.

has_recommendation_impression String
String ( t  or f ) to indicate whether a recommendation
was seen.

has_recommendation_purchase String
String ( t  or f ) to indicate whether a recommended
product was purchased.

has_stealth String
String ( t  or f ) to indicate whether visitor is in Stealth
Mode. This is configured within your account settings.

is_bounce String
String ( t  or f ) to indicate whether a visitor bounced
during this session.

is_closed String
String ( t  or f ) to indicate whether the session is
closed.

offers Object
Experience split IDs and time when the split was first
seen in Unix milliseconds.

os String Operating system.

os_version String Operating system version.

page_event_ids Object
Page event IDs and time when that event was seen for
the first time in Unix milliseconds.

page_views Number Number of page views that occurred within the session.

page_views_ss Number Number of page views squared for statistical analysis.

product_view_count Number Number of product views.

purchase_count Number Number of purchases within the session.

Field Type Description



purchase_lines Object

A map of purchase IDs to maps containing detailed
information about each purchase, including total value
and time for each purchase, and product ID, SKU, unit
price, and quantity for each product in a purchase.

purchase_value_ss Number
Purchase values squared and summed for statistical
analysis.

purchases Object

Purchase IDs and their monetary values with each key-
value pair representing one checkout. The purchase ID is
provided by your integration and is not defined by
Monetate.

region String Region code.

screen_height Number Visitor screen height.

screen_width Number Visitor screen width.

session_count Number Session count (always 1).

session_id String
The ID that uniquely identifies this session and
composed of the GUID, purchase count, start time, and
end time.

session_value Number Total value of purchases within the session.

session_value_ss Number
Total value of session purchases squared for statistical
analysis.

start_time Number Session start time in Unix milliseconds.

time_on_site Number Time on site in seconds during the session.

time_on_site_ss Number Time on site in seconds squared for statistical analysis.

view_lines Array
A list of products viewed, including product ID and time
for each item.

Field Type Description

Retrieving Interpretable Values
Session Stream uses unique IDs rather than interpretable names for values such as offer and page event IDs.
Monetate provides unique IDs because these IDs never change, whereas you can change the display name of
variants and page events within the platform. This means that data received through Session Stream always
refers to the same data objects within Monetate and results in zero duplicate data entries on your end.

Titles can be valuable, so Monetate provides you with access to the Monetate Metadata API. This API allows you
to request interpretable values for offers, page events, and target IDs for display in your data warehouse or BI
tool.

For more information about the Monetate Metadata API, see Get Interpretable Values with the Metadata API.

http://docs.monetate.com/docs/get-interpretable-values-with-the-metadata-api

