
Create a Banner Message
Displaying a banner involves creating an action trigger that activates an Omnichannel experience to return an
appropriate JSON object. This object contains data that you can use to populate a banner message. You can
use the Get Actions method to set up this trigger and obtain the JSON.

You can use the returned JSON data for multiple purposes. This example uses the JSON to display a banner
message.

Creating the Experience
You must first create an Omnichannel experience within Monetate that uses an Omni JSON action type. Refer to
Create an Omnichannel Experience for instructions.

You can use the following JSON template for the required input:

{
 "meta": {
 "type": "action",
 "tool": "android",
 "version": "1"
 },
 "data": {
 "actionId": "12345",
 "actionType": "monetate:action:OmnichannelJson",
 "component": "home_component_1",
 "impressionId": "5678",
 "json": {
 "text": "Experience Configured for Android Personalization SDK",
 "color": "#FF0000",
 "style": "bold",
 "fontSize":24,
 "buttonText": "Reset All",
 "buttonColor": "#7B68EE",
 "type": "monetate:action:GenericAction"
 }
 }
}

This is the JSON object that is returned on the trigger. Modify this template to suit your needs.

Triggering the Experience
The Omnichannel experience is triggered using the getActions method. This method is used when you want to
satisfy an experience using a single event condition.

public String getActions(String context, Object event, String[] actionTypes) {returns response;}

Parameters:

actionTypes is the type of action you want to request. You can specify one action or multiple actions in
an array to handle. (Required)
context is name of the event. (Required)
eventData is the data associated with the event. (Required)

Full Code Example
Complete code example blocks are listed below. This code triggers the configured Omni JSON experience and
handles the experience by displaying a banner. Customize the example code as you see fit.

Personalization personalization = new Personalization(user, account);
IpAddress address = new IpAddress();
address.setIpAddress("127.0.0.0.");

String responseData;
new Thread(new Runnable()
{
 @Override
 public void run()
 {

 // Get the responseData using getActionsData
 responseData = personalization.getActions(EventTypes.ContextIpAddress, address, ActionTypes.OmniChannelJson);

 // Once you receive responseData from getActionsData, use the Handler and parse the required data
 new Handler(Looper.getMainLooper()).post(new Runnable()
 {
 @Override
 public void run()
 {

 // Parse the received responseData, get the requiredData and use it accordingly
 try
 {
 // Example: textView.setText(requiredData);
 }
 catch (Exception ex)
 {
 // Catch any exception that occured while parsing
 ex.printStackTrace();
 }
 }
 });

 }
}).start();

You must handle the getActions method in a Thread or AsyncTask. To update the main thread, you can use
either Handler or runOnUiThread. The code example above uses Thread and Handler to update the main thread
and change the UI.

