
Create an Omnichannel
Recommendations Action
Omnichannel recommendations is an integrated recommendations experience that is consistent across all
platforms that you connect to Monetate. Whether a customer is viewing your storefront through a mobile app or
your site, Omnichannel recommendations ensure a consistent experience.

You can set up a handler for an Omnichannel recommendations action by using two methods. The addEvents
method defines the events that can trigger the action. The getActionsData method is then used as the trigger
and requests the decision based on the defined events. getActionsData then returns a JSON object containing
recommendations data that you can then handle in code.

Prerequisites
You must first create an Omnichannel experience within Monetate for the methods to reference.

Make note of the WHO settings, as these correspond to events your code listens for. The example experience in
this article uses the following WHO settings:

IP address is 1.0.0.2
Screen height is at least 500 pixels and screen width is at least 300 pixels

The example code in this article fulfills these conditions and will trigger the Omnichannel experience.

addEvent
This method reports a local event.

public void addEvent(String context, Object event)

Parameters:

context is name of the event. (Required)
events is the event data. (Required)

You can use this method multiple times to add all the necessary events for an experience you might want to
trigger. The example code uses multiple method calls to fulfill the experience requirements:

IpAddress ipAddress = new IpAddress();
ipAddress.setIpAddress("10.0.0.2");

ScreenSize screenSize = new ScreenSize();
screenSize.setHeight(23);
screenSize.setWidth(34);

// addEvent
personalization.addEvent(EventTypes.ContextScreenSize, screenSize);
personalization.addEvent(EventTypes.ContextIpAddress, ipAddress);

getActionsData
This method sends the defined events to Monetate to trigger an experience. If the events fulfill the WHO settings
of an experience, then that experience is triggered. A JSON object containing the experience response is then
returned.

public String getActionsData(String[] actionTypes)

Parameters:

actionTypes is the type of action you want to request. You can specify one action or multiple actions in
an array to handle. (Required)

responseData = personalization.getActionsData(ActionTypes.OmniChannelRecommendation);

Full Code Example
Complete code example blocks are listed below.

Personalization personalization = new personalization(user, account);

// Events/context data
IpAddress ipAddress = new IpAddress();
ipAddress.setIpAddress("10.0.0.2");

ScreenSize screenSize = new ScreenSize();
screenSize.setHeight(23);
screenSize.setWidth(34);

// addEvent
personalization.addEvent(EventTypes.ContextScreenSize, screenSize);
personalization.addEvent(EventTypes.ContextIpAddress, ipAddress);

// getActionsData
String responseData;
new Thread(new Runnable()
{

{

 @Override
 public void run()
 {

 // Gets the responseData using getActionsData
 responseData = personalization.getActionsData(ActionTypes.OmniChannelRecommendation);

 // Once you receive the responseData from getActionsData, use the Handler and parse the required data
 new Handler(Looper.getMainLooper()).post(new Runnable()
 {
 @Override
 public void run()
 {

 // Parse the received responseData, get the requiredData from it and use it accordingly
 try
 {
 // Example: textView.setText(requiredData);
 }
 catch (Exception ex)
 {
 // Catch any exception that occured while parsing
 ex.printStackTrace();
 }

 }
 });
 }
}).start();

You must handle the getActions method in a Thread or AsyncTask. To update the main thread, you can use
either Handler or runOnUiThread. The code example above uses Thread and Handler to update the main thread
and change the UI.

