
SDK Methods
The following methods are available to use in the SDK. All methods are part of the personalization class.

For parameters that require event names, refer to SDK Events and Action Types for syntax.

report
Reports an event to Monetate. This allows data to later be used for decisions within Monetate. Use this method
to report events.

public void report(String context, Object events){}

Parameters:

context is name of the event. (Required)
events is the event data. (Required)

Example code:

Personalization personalization = new personalization(user, account);

IpAddress address = new IpAddress();
address.setIpAddress("127.0.0.0.");

new Thread(new Runnable() {
 @Override
 public void run() {
 personalization.report(EventTypes.ContextIpaddress, address);
 }
}).start();

addEvent
Reports an event to Monetate. Use this method to report events that you intend to use to trigger experiences.
You can use multiple calls of this method to report multiple events for experiences that require multiple
conditions.

This method is used to report events that are used by the getActionsData method to determine an experience.
If you use this method, you must use getActionsData to trigger the experience that satisfies the reported
events.

public void addEvent(String context, Object event)

Parameters:

context is name of the event. (Required)

events is the event data. (Required)

Example code:

IpAddress ipAddress = new IpAddress();
ipAddress.setIpAddress("1.0.0.0");

ScreenSize screenSize = new ScreenSize();
screenSize.setHeight(1011);
screenSize.setWidth(2011);

PageView pageView = new PageView();
pageView.setPageType("Cartpage");
pageView.setUrl("https://www.monetate.com");

personalization.addEvent(EventTypes.ContextIpAddress, ipAddress);
personalization.addEvent(EventTypes.ContextPageView, pageView);
personalization.addEvent(EventTypes.ContextScreenSize, screenSize);

getActionsData
Request an experience decision from Monetate based off the action type. You can specify one action or multiple
action types in an array to get multiple responses.

The experience decision depends on event data reported using addEvent calls. Use addEvent to add all of the
relevant events before you use this method to request a decision.

public String getActionsData(String[] actionTypes)

Parameters:

actionTypes is the type of action you want to request. You can specify one action or multiple actions in
an array to handle. (Required)

Example code:

Personalization personalization = new personalization(user, account);

// Events/context
IpAddress ipAddress = new IpAddress();
ipAddress.setIpAddress("1.0.0.0");

ScreenSize screenSize = new ScreenSize();
screenSize.setHeight(1011);
screenSize.setWidth(2011);

PageView pageView = new PageView();
pageView.setPageType("Cartpage");
pageView.setUrl("https://www.monetate.com");

// addEvent
personalization.addEvent(EventTypes.ContextScreenSize, screenSize);
personalization.addEvent(EventTypes.ContextIpAddress, ipAddress);
personalization.addEvent(EventTypes.ContextPageView, pageView);

// getActionsData
String responseData;
new Thread(new Runnable() {
 @Override public void run() {
 // Gets the responseData using getActionsData functionality
 responseData = personalization.getActionsData(ActionTypes.OmniChannelJson);

 // Once you receive the responseData from getActionsData, use the Handler to parse the required data
 new Handler(Looper.getMainLooper()).post(new Runnable() {
 @Override
 public void run()
 // Parse the received responseData, get the requiredData and use it accordingly
 try{
 // Example: textView.setText(requiredData);
 }
 catch(Exception ex){
 // Catch any exception that occurs while parsing
 ex.printStackTrace();
 }
 }
 });
 }
}).start();

getActions
Reports an event and immediately requests a decision from Monetate. Use this method if an experience you

want to trigger requires a single event. This method returns a JSON object that includes the response data.

The response data can then be used in your application. For example, you can use this method to obtain data to
display as a banner on a page.

public String getActions(String context, Object event, String[] actionTypes) {returns response;}

Parameters:

actionTypes is the type of action you want to request. You can specify one action or multiple actions in
an array to handle. (Required)
context is name of the event. (Required)
eventData is the data associated with the event. (Required)

Example code:

Account account = new Account("localhost.org", "a-701b337c", "p","localhost");
User user = new User();
user.setCustomerId(null);
user.setDeviceId("DeviceID");

Personalization personalization = new Personalization(user,account);
IpAddress address = new IpAddress();
address.setIpAddress("127.0.0.0.");

String responseData;
new Thread(new Runnable() {
 @Override
 public void run() {

 // Gets the responseData using getActions
 responseData = personalization.getActions(EventTypes.ContextIpAddress, address,ActionTypes.OmniChannelJson);

 // Once you receive the responseData from getActions use the Handler to parse the required data
 new Handler(Looper.getMainLooper()).post(new Runnable() {
 @Override
 public void run() {

 // Parse the received responseData, get the requiredData and use it accordingly
 try{
 // Example: textView.setText(requiredData);
 }
 catch(Exception ex){
 //Catch any exception that occured while parsing
 ex.printStackTrace();
 }
 }
 });

 }
}).start();

flush
Immediately sends all event data that are currently queued. Use this method if you want to report an event
immediately. This method returns a response of success or failure.

This method might throw the following exceptions that you must handle:

InterruptedException
ExecutionException
TimeoutException

public String flush() throws InterruptedException, ExecutionException, TimeoutException {}

Example code:

Personalization personalization = new Personalization(user,account);
IpAddress address = new IpAddress();
address.setIpAddress("127.0.0.0.");
new Thread(new Runnable() {
 @Override
 public void run() {
 Personalization.report(EventTypes.ContextIpaddress, address);
 personalization.flush();
 }
}).start();

setCustomerId
Updates the customerId within the User object.

public void setCustomerId(String customerId);

Parameters:

customerId is a string containing the customer ID. (Required)

Example code:

personalization.setCustomerId("test_customer_id");

